

Journal of Inclusion Phenomena and Macrocyclic Chemistry **38**: 23–35, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Vibrational Spectroscopic Studies on the T_d -type Adeninemetal(II)tetracyanometallate(II) Benzene Clathrates: M(ad)₂M'(CN)₄.C₆H₆ (M = Mn or Cd, M' = Cd or Hg)

SEVGI BAYARI^a, CELAL BAYRAK^a and ZIYA KANTARCI^b

^aHacettepe Üniversitesi, Eğitim Fakültesi, Fizik A.B.D. Beytepe, 06532 Ankara, Turkey; ^bGazi Üniversitesi, Fen-Edebiyat Fakültesi, Teknikokullar, 06500 Ankara, Turkey

(Received: 20 November 1998; in final form: 12 August 1999)

Abstract. IR spectra of $Mn(adenine)_2M(CN)_4.C_6H_6$ (M=Cd or Hg), and IR and Raman spectra of Cd(adenine)_2M(CN)_4.C_6H_6 (M=Cd or Hg) are reported. The spectral data suggest that the host frameworks of these compounds are similar to those of the Hofmann-T_d-type and the adenine coordination is via N(10).

Key words: clathrates, inclusion compounds, adenine, tetracyanometallate, benzene, IR spectra, Raman spectra.

1. Introduction

In a recent paper [1], we reported that the IR and Raman spectral results suggest that the structure of Mn(NH₃)₂M(CN)₄.2C₆H₆ (M=Cd or Hg) compounds are similar to those found in T_d -type clathrates given with the formula Cd(II)(NH₃)₂Cd(II)(CN)₄.2C₆H₆ [2] and Cd(II)(NH₃)₂Hg(II)(CN)₄.2C₆H₆ [3]. In the host frameworks of these, which are substantially isostructural, the M atom (Cd or Hg) in the M(CN)₄ unit is tetrahedrally coordinated to the carbon atoms of four cyanide groups, while the cadmium atom is octahedrally surrounded by six nitrogen atoms, two from the NH₃ ligands attached to the Cd atom in positions trans to each other and four are from cyanide groups. The M(CN)₄ groups are linked by the Cd(NH₃)₂ moities to form a three-dimensional network. This structure provides two kinds of cavities, α and β , for the guest molecules. The α cavity is a rectangular box similar to those in Hofmann-type hosts, while the β cavity is a twisted biprism [2, 3]. The number of guest molecules may vary stepwise from 2, 3/2, 1 to 1/2according to the number of cavities (0, 1, 2, 3) occupied by substituents [4]. For the present purposes, it is appropriate to mention Hofmann-type clathrates containing ethanolamine as ligand: In the host structure of this clathrate, one of the cavities is occupied by the free end of the ligand [5].

In this paper we present the IR spectra of $M(adenine)_2 M'(CN)_4 \cdot C_6 H_6$ (M=Mn, M'=Cd or Hg) (abbreviated to M-ad-M'-Bz) and IR and Raman spectra of the Cd(adenine)_2 M'(CN)_4 \cdot C_6 H_6 (M'=Cd or Hg) compounds and adenine.

2. Experimental

All starting chemicals used were reagent grade (Merck) and used without further purification.

The clathrates M-ad-M'-Bz (M'=Cd or Hg) in fine powder form were synthesized by adding 2 mmol of adenine solution in alcohol and 1 mmol of $K_2M(CN)_4$ (M=Cd or Hg) solution in water to 1 mmol of MCl₂ (Mn or Cd) solution in water. The precipitate formed was filtered, washed with water, ethanol and ether successively and kept in a desiccator.

The host complexes Cd-ad-Cd and Cd-ad-Hg were prepared by a similar method to that given above in the absence of benzene. The freshly prepared compounds were analyzed for C, H and N [the Cd(en)Cd(CN)₄ complex [6] has been used as a reference] with the following results (found %/calculated %):

$Cd(C_5H_5N_5)Cd(CN)_4.C_6H_6:$	C = 35.27/35.46	H = 2.29/2.38	N = 28.63/28.95
$Cd(C_5H_5N_5)Hg(CN)_4.C_6H_6$:	C = 31.14/31.38	H = 2.21/2.10	N = 25.27/25.61
$Mn(C_5H_5N_5)Cd(CN)_4.C_6H_6:$	C = 38.17/38.75	H = 2.69/2.60	N = 31.08/31.64
$Mn(C_5H_5N_5)Hg(CN)_4.C_6H_6:$	C = 33.69/33.93	H = 2.86/2.28	N = 28.01/27.70
$Cd(C_5H_5N_5)Cd(CN)_4$	C = 35.16/35.07	H = 1.91/1.80	N = 27.21/22.54
Cd(C5H5N5)Hg(CN)4	C = 24.31/24.46	H = 1.41/1.46	N = 28.71/28.53

The IR spectra of the compounds were recorded between 4000 and 200 cm⁻¹ on Perkin Elmer 621 and Mattson 1000 FTIR spectrometers, which were calibrated using polystyrene. The samples were prepared as mulls (without grinding) in nujol and hexachlorobutadiene between CsI plates. Raman spectra of the Cd-ad-Cd-Bz and Cd-ad-Hg-Bz clathrate compounds (in powder form) in a home-made spinning cell were excited using the 514.5 nm line of a Spectra-Physics Model 2016-4S argon-ion laser and recorded on a Jobin-Yvon U1000 spectrometer which was calibrated against the laser plasma emission lines.

3. Results and Discussion

Before embarking upon the vibrational features of the compounds, a word may be in order regarding the number of benzene molecules accommodated. In spite of our efforts to trap more benzene molecules in the host structure of the present clathrates, we have only obtained the composition $M(ad)_2M'(CN)_4.C_6H_6$. The decrease of the number of benzene molecules from 2 in en-T_d-type [6] and Hofmann-T_dtype [1] clathrates to 1 in our cases may be due to the bulkiness of the adenine ligand; therefore, one of the cavities may be occupied by a pair of imidazole rings and so only the other cavity may be effective in accommodating the guest molecule.

The spectral features of the compounds under study are found to be similar to each other, suggesting that they also have similar structural features. The IR spectra of the Cd-ad-Cd-Bz clathrate and the Cd-ad-Cd complex are shown in Figure 1 (a and b) as representative illustration. It will be convenient to divide the vibrations into three groups arising from the adenine ligand, from the $M(CN)_4$ units and from the benzene moieties. The spectral bands due to the $M'(CN)_4$ and benzene species are straightforward since these bands are persistent and picked out with ease [1, 7–9]. The vibrational wavenumbers of the bands in the spectra of these species are tabulated in Tables I–III, respectively, along with some relevant spectral data for comparison.

3.1. ADENINE VIBRATIONS

For adenine (6-aminopurine) several tautomeric forms can be envisaged in the isolated state. The N(9)H aminic form being the most stable is established by theoretical calculations [10, 11], infrared and Raman [12, 13], NMR [14], microwave [15] and ultraviolet photoelectron studies [16] but in more polar environments the polar N(7)H form may be more stable [17]. These two forms are illustrated in Figure 2.

In dealing with the band assignments of the adenine in the compounds studied, the N_9H form will be treated. This treatment is reasonable in that in the proposed structure, there is the possibility that two adenine molecules may be tail to tail in such a way that the H atom of one N(9)H tautomer is bound to the N(3) donor atom of the other and vice versa. Such a hydrogen bonding may stabilize the N(9)H form.

In spite of the high complexity of adenine molecule and its lack of symmetry, considerable efforts have been made to characterize its vibrational bands, since it is one of the components of nucleic acids which are contituents of DNA and RNA, the biologically most important molecules. Of the vibrational studies of adenine, two reports are relevant for our purpose. Hirakawa et al. examined Raman and infrared spectra of adenine, adenine-1,3-[¹⁵N₂], adenine-2-[¹³C] and adenine-8-[¹³C], and their amino-d₂-9-d derivatives in crystalline powders [12]. Based on these spectral data, together with a single-crystal infrared spectrum of 9-methyladenine [18] and infrared spectra of six different deuterated derivatives of adenine [19], the fundamental bands of adenine in the 1800–200 cm^{-1} region were assigned. These assignments have also been supported by a normal coordinate treatment through an ab initio MO calculation of the force constants of adenine [10, 20] (Table I). Nowak et al. presented infrared spectra of adenine and its ¹⁵N isotopomers with ¹⁵N at the N(9) or N(7) positions isolated in a low-temperature matrix of argon and compared those with the spectra predicted at the DFT (density functional theory with the the Becke3-LYP functions using the 6-31G (d, p) basis set) level (Table I) [11]. It

Figure 1. The infrared spectra of the Cd-ad-Cd complex (a) and the Cd-ad-Cd-B clathrate (b) in nujol (* in hexachlorobutadiene).

Figure 2. The N(9)H (a) and N(7)H; (b) tautomers of adenine.

should be noted that the infrared spectra of gas-phase adenine have been recorded from 100 to 3700 cm⁻¹ [21]. The wavenumbers of the fundamental vibrations of adenine in powder form, and in an argon matrix, and their assignment given by Hirakawa *et al.* [12] and Nowak *et al.* [11], respectively, are presented in Table I. Table I also tabulates the wavenumbers predicted from the DFT (density functional theory) [11] and the gas-phase infrared spectra of adenine for comparison [21]. A glance at Table I shows that there are several discrepancies between the two assignments given by Hirakawa *et al.* [21] and Nowak *et al.* [11]. These cannot be assessed here.

From Table I it is clear that the assignments of the fundamental bands in the $4000-1800 \text{ cm}^{-1}$ region due to the stretching vibrations of N-H and C-H bands are straightforward while the proper assignment of the bands in the $1800-200 \text{ cm}^{-1}$ region, on the basis of experimental data only, is practically not possible. The notable spectral features are the following:

The NH₂ stetching frequencies of the adenine molecules in the clathrate compounds are found to be ca. 50 cm⁻¹ lower than those of adenine in an Ar matrix (Table I). In addition, the C(6)-NH₂ stretching frequencies in the clathrates are ca. 15 cm⁻¹ lower than that of adenine in the solid form. These downward frequency shifts may be explained as weakening of the N(10)-H and C(6)-N(10) bands resulting from the electrons draining from the N(10) atom on account of its coordination to the metal atom M. The infrared band observed at ca. 1088 cm⁻¹ in the clathrate compounds are assigned to the ω (NH₂) wagging vibration, which appears at 660 cm⁻¹ in solid adenine. Such a large upward frequency shift of the ω (NH₂) mode in Hofmann-type aniline complexes, M(aniline)₂M'(CN)₄ (M=Mn, Fe, Co or Cu and M'=Ni, M=Ni or Cd and M'=Pt), is suggested to be due to the effect of the changes in hybridization about the nitrogen atom, caused by the binding of the metal (M) to the N(10) site [22]. Similar shifts have been observed in other metal complexes of aniline [23]. It should be noted that the six-membered ring and five-membered ring in-plane stretching bands remain essentially unaltered suggesting that the expected second coordination site (possibly N(3) or N(9)) is not possible to be assigned [13, 24].

3.2. $M'(CN)_4$ GROUP VIBRATIONS

The fact that in the host framework of the T_d -type clathrates [1, 7, 8] and the T_d -type host complexes [9] the metal atom M' in M'(CN)₄ is tetrahedrally surrounded by the carbon ends of four CN ions suggests that the host framework of the clathrates studied here also have tetrahedral $M'(CN)_4$ units. In order to assign the bands attributable to the $M'(CN)_4$ (M'=Cd or Hg) ion in the spectra of our clathrate compounds, we refer to the work of Jones who presented vibrational data for the salts $K_2M'(CN)_4$ (M'=Cd or Hg) in the solid state [25]. The structural studies on these salts have shown that the K-NC distance is ca. 2.9 Å in K₂Cd(CN)₄ [26], and $K_2Hg(CN)_4$ [27], while the Cd-NC distances are ca. 2.3 Å in T_d -type host frameworks [4]. Therefore, they can be used as references to account for the vibrational changes when the stiffer Cd-NC bonding takes place. The vibrational data for $M'(CN)_4$ groups in the clathrate compounds under study are given in Table II, together with the vibrational wavenumbers of $K_2Cd(CN)_4$ and $K_2Hg(CN)_4$ [25]. Table II also lists the wavenumbers of the infrared and Raman spectra of the $Cd(CN)_4$ unit in the $Cd(NH_3)_2Cd(CN)_4.2C_6H_6$ clathrate [1] for comparison. The assigned wavenumbers for the M'(CN)4 group in the compounds studied appear to be much higher than those for $M'(CN)_4$ groups in $K_2M'(CN)_4$ (M' = Cd or Hg) (Table II). Such frequency shifts have been observed for other Hoffman- T_d -type clathrates [1, 7] and Hoffman- T_d -type host complexes [8, 9], in which both ends of the CN group are coordinated and explained as the mechanical coupling of the internal modes of M'(CN)₄ (M=Zn, Cd or Hg) with the metal M-NC vibrations. It follows that the N-ends of the M'(CN)₄ groups are also bound to a M atom in our clathrate compounds. Another notable feature is that v_5 is at a higher frequency for Cd (2179 cm⁻¹) than for Mn (2177 cm⁻¹) suggesting that the strength of the Cd-N bond is higher than that of the Mn-N bond. This is due to the fact that the second ionization potential of Cd is higher than that of Mn.

3.3. BENZENE VIBRATIONS

The assignments and the frequencies of the vibrational bands arising from the enclathrated benzene observed in the spectra of the $M(adenine)_2M'(CN)_4 \cdot Bz$ (M=Mn, M'=Cd or Hg; M=Cd, M=Cd or Hg) compounds are given in Table III, along with the wavenumbers of benzene in the liquid phase [28] and in the Cd(NH₃)₂Cd(CN)₄.2C₆H₆ clathrate [1] for comparison. The most structurally informative spectral features are the following.

The CH out-of-plane mode (A_{2u}) in the spectra of the clathrates are found to be shifted to higher frequency (681 cm⁻¹) (Table III) from that of liquid benzene (670 cm⁻¹). Similar positive frequency shifts were observed for Hofmann-T_d-type [1,

Gas-phase Adenine ^a IR	Adenin Ar mati IR	e in a rix ^b I(rel)	Theory (DFT) potential energy distribution ^b	Adenine a crystalline IR	as e powder ^c R	Assignment ^c	Cd-ad- Cd-Bz	Cd-ad- Hg-Bz	Mn-ad- Cd-Bz	Mn-ad- Hg-Bz	Cd-ad-Cd	Cd-ad-Hg
3552m	3565 3557 3555 3552 3552	84	ν (NH ₂) antisym (100)	_	-	_	3512m	3512m	3512vs	3514vs	no	no
3501s	3506 3503 3502 3498 3494 3489	135	v(N9H) (100)	-	_	-	3473m	3479sh	no	no	3474m 3455vw	3474m
3434s	3448 3441 3438	110	ν(NH ₂) sym (100)	-	-	_	3406s 3265m 3132w	3402s no 3134w	3404s no 3140w	3404s no 3138w	3424m 3263m no	3423m no
3061m	3057	6	ν C8H(99)	_	_	_	3070vw	no	no	no	no	3070vw
_	3041	3	ν C2H (100)	_	_	_	no	3052vw	3043vw	3043vw	3051vw	no
1625vs	1639		β NH ₂ scis(28)	1673vs,b	1677vw	NH ₂ scis	1641vs	1641vs	1641vs	1633	1669vs	1669s
1625vs	1633 1626sh	447	v C6N10 (21), v C5C6 (19)									
-	-	-	-	1638w	-	v_1	1612m	1618sh	1624sh	1623sh	1611vs	1611s
_	1612	219	ν N3C4(27), ν C5C6(12)	1604vs,b	1612w 1597w	v_2	1585vs	1585vs	1583vs	1583s	1564m	1564m
_	-	-	-	1508m	1514vw 1508m	ν_3	1514w	1525w	1529vw 1516vw	no	1518w 1512w	1517w
	1482	11	ν N7C8(48), β C8H(12)	_	1485	ν_A	1497w	1497w	1498sh	1497sh	no	no
				_	1482m	-	1470s	1470s	1470s	1468s	1475w	1475w
1468s	1474	71	ν C6N1 (24), β C2H (22), ν C6N1O (13), β NH ₂ scis (12), ν C2N3 (12)	1451m -	1462w 1442vw	N(9)-H bend	1462w	no	1465w	no	1468m	1468m

Table I. The infrared wavenumbers (cm^{-1}) of adenine in the M-ad-M'-Bz clathrates^{*}

29

Table I. Continued.

Gas-phase Adenine ^a	Aden Ar m	ine in a atrix ^b	Theory (DFT) potential energy distribution ^b	Adenine a crystalline	s e powder ^c	Assignment ^c	Cd-ad- Cd-Bz	Cd-ad- Hg-Bz	Mn-ad- Cd-Bz	Mn-ad- Hg-Bz	Cd-ad-Cd	Cd-ad-Hg
IR	IR	I(rel)		IR	R	-						
1415s	1419	49	v C4CS(27), v C4N9(21)	1421s	1419w	<i>v</i> 5	1429w	1433cq	1439w	1440cw	1431m	1431m
							1417m	1417m	1416m	1416m	1404s	1403s
-	1389	45	β N9H (27), β C2H (27),	1368m	1371m	C(2)-H bend	1402s	1400m	1398s	1398s	1393m	1393m
			ν C8N9 (14), β R1 (12)									
1346(sh)m	1345	21	ν N9C8 (20), β C8H (13),	-	-	-	1348sh	(1338)m				no
			β N9H(10), ν C6N1 (10)					1348sh	1348sh	1344sh	1364s	
-	1334	7	_	1335s	1332s	v_6	(1337)w	1336m	1336m	1334m	1335m	1335m
							1336m					
1326s	1328	40	ν N1C2(31), ν C5N7(19),	1309s	1307m	ν_7	1290s	1290vs	1288vs	1288vs	1291w	1273w
			βC2H(11)									
1280s	1290	68	v C2N3(43), v C5N7(13),	-	-	_	no	no	no	no	no	no
			vN1C2 (10)									
-	-	-	-	1253s	1249m	C(6)-NH ₂ str.	1234s	1236s	1236ms	1234s	1230m	1230m
-	1240	28	β C8H (36), ν N7C8 (16),	-	-	-	no	no	no	no	no	no
			β N9H(10)									
1234s	1229	13	β NH ₂ rock (26), ν C5N7 (22)	1234w,sh	1235w	ν_8	1221m	1223m	1223sh	1225sh	1220m	1220m
-	-	-	-	1157m	1163w	C(8)-H bend	1159w	1146vw	1155w	1150w	1152m	1152m
1126w	1127	6	ν C4N9(20), β r4(10),	1126s	1126m	<i>v</i> 9	1130m	1130s	1128s	1128s	no	no
			v C6N10 (10)									
	1032	27	ν C8N9 (55), β N9H (32)	1025s	1025w	NH ₂ rock	103 Sm	1036m	1036m	1034m	1033w	1033vw
957w	958	3	γ C2H(108)	951w,sh	952w,sh	v_{14}	no	no	no	no	no	no
-	-	-	_	940s	941m	C(8)-H bend	(944)m	(945)m				
							947mw		945m	943m	949vw	954vw
926vw	927	13	β r4 (42), β r5 (32), ν C4C5 (11)	913s	899w	v ₁₁	903m	903m	903m	903m	905w	905w
	887	8	β R1 (49), β R3 (15)	872m,br	-	N(9)-H bend	883m	889m	889m	891mw	881mw	880w
847w	848	6	γC8H (90)	849m	846vw	C(2)-H bend	no	no	no	no	no	no
				844m	840vw							

Gas-phase Adenine ^a IR	Ade Ar n IR	nine in a natrix ^b I(rel)	Theory (DFT) potential energy distribution ^b	Adenine crystallir IR	as ne powder ^c R	Assignment ^c	Cd-ad- Cd-Bz	Cd-ad- Hg-Bz	Mn-ad- Cd-Bz	Mn-ad- Hg-Bz	Cd-ad-Cd	Cd-ad-Hg
801w	802	9	τ R1 (46), $τ$ r4 (20), g C6N1O (19), γ C8H(15)	797m	797vw	v ₁₆	795m	796m	796m	796m	796s	795s
-	717	5	ν N3C4 (20), β r4 (14),	723s	724vs	v_{10} ring breat.	(720)m	(724)m				
			v C5N7 (11), v C4N9 (10)				721s	721s	721m	721m	720m	723m
_	698	2	_	684w,sh	-	v ₁₉	no	no	no	no	686m	686m
	687	3										
-	_	-	_	660s,vb	-	NH ₂ wag	1088m	1089s	1088s	1086s	1079w	no
650 vw	655	6	τ r4 (52), t r5 (36)	641m		ν_{20}	638s	630m	633w	629w	620w	620w
600vw	610	5	β r5 (29), ν C5C6 (21),	622m	623m	v_{12}	(618)s	(614)ms				
			β R2 (17)				623m	611m	613m	611m	596s	595s
563w	566	46	τ R2 (27), γ N9H (24), τ R1 (23) τ r5 (12)	-	560w	_	no	no	no	no	573m	573m
_	_	_	_	543s	535m	v ₁₃	(533)w	no				
						10	535m	532m	532m	530m	527m	527m
_	_		twist NH ₂ (62)	_	530w,sh	v15	no	no	no	no	no	no
_	_	_	-	530w	_	v ₁₈	530sh	no	no	no	no	no
_	_	_	-	380w	_	NH ₂ tor	389s	389s	389s	389s	394m	393m
_	_	_	_	337m	331s	C(6)-NH ₂	(311)m	(313)m				
					327s	bend	310w	310w	310w	310,v	320w	315w

Table I. Continued.

* Raman bands are in parentheses. ^{a,b,c} Taken from refs [21, 11, 12], respectively. v = very, s = strong, w = weak, sh = shoulder, br = broad, no; not observed.

K2Cd(CN)4^a K2Hg(CN)4^a Cd-(NH3)2-Cd-2Bz^b Cd-ad-Cd-Bz Cd-ad-Hg-Bz Mn-ad-Cd-Bz Mn-ad-Hg-Bz Cd-ad-Cd Cd-ad-Hg Assignment $v_{s}(CN)A_{1}$ (2149) (2149)(2178)vs (2185)s (2185)s no no no no (335) v_2 (MC)A₁ (324) _ no no no no no no $\nu_3 [\delta(\text{MCN})] E$ no no no no no _ _ no _ $v_4 [\delta(CMC)] E$ _ no no no no no no v5 (CN)F2 2145 2146 2165vs 2179vs 2179vs 2177vs 2177vs 2167s 2167s Hot band? 2154vw 2167vw 2167vw 2164vw 2169vw 2147vw 2147vw _ _ ν₅ [(¹³CN)] 2135vw 2142vw 2142vw 2140vw 2141vw 2129vw 2129vw _ _ $v_6 [v(MC) + \delta(NCM)]F_2$ 316 368s 370s 370s 384s 384s 370s 370s 330 $v_7 [v(MC) + \delta(NCM)]F_2$ 250 235 283w 277w 277w 277w 285w 286w _

Table II. The vibrational wavenumbers (cm^{-1}) of the M'(CN)₄ group for the M-ad-M'-Bz clathrates^{*}

* Raman bands are in parentheses.

^a Taken from ref. [25].

^b Taken from ref. [1].

vs = very strong, s = strong, w = weak, m = medium, sh = shoulder; no: not observed.

-	VIBRATION
-	VAL SPECTROSCC
	PIC STUDIES OI
	F HOFMANN TY
	PE CLATHRATES

Table III. The vibrational wavenumbers (cm ⁻	¹) of benzene in the M-ad-M'-Bz clathrates*
---	---

Assignment ^a	Benzene ^b (Liquid)	$Cd-(NH_3)_2-Cd-Bz^c$	Cd-ad-Cd-Bz	Cd-ad-Hg-Bz	Mn-ad-Cd-Bz	Mn-ad-Hg-Bz
<i>v</i> ₈	(3166)	no	no	no	no	no
$v_{20} E_{1u}$	3073	3080in	3086m	3086m	3088m	3086m
$v_8 + v_9$	3075	3064m	3076w	3068w	307Ow	3068m
$v_{13} B_{1u}$	3048	3028s	3030m	3030mw	3032m	3030w
$v_2 A_{1g}$	(3062)	(3060)m	(3070)w	no	no	no
v7 E2g	(3050)	(3040)w	(3041)vw	(3049)vw	no	no
$v_5 + v_{17} E_{1u}$	1955	no	1957w	1957w	1959vw	1957vw
$\nu_8 E_{2g}$	(1586)	(1580)w	(1585)m	(1585)m	no	no
$v_{10} + v_{17}$	1815	no	1815w	1815vw	1815w	1815w
$v_{19} E_{1u}$	1479	1477m	1477s	1477s	1479s	1477ms
$v_{14} B_{2u}$	1309	no	no	1307w	no	no
v9 E2g	(1177)	(1174)m	(1171)vw	(1171)vw	no	no
$v_{15} B_{2u}$	1149	1145sh	1154vw	1146vw	1155vw	1150vw
$v_{18} E_{1u}$	1036	1032w	1034m	1036m	1036m	1034m
$v_1 A_{1g}$	(991)	(989)vs	(991)m	(992)m	no	no
$v_{10} E_{1g}$	(850)	(854)w	(849)vw	(849)vw	no	no
$v_{11} A_{2u}$	670	698s	681vs	681vs	681vs	681vs
		686vs				

* Raman bands are in parentheses.
^a Taken from ref. [33].
^b IR bands from ref. [28] and Raman bands from ref, [34].
^c Taken from ref. [1].

v = very, s = strong, w = weak, m = medium, no = not observed.

7] clathrates and Hofmann-type clathrates [29]. Akyüz *et al.* [29], explained this upward shift by the presence of a weak hydrogen bond between the π electrons located above and below the plane of the benzene ring and the ammonia molecules of the host lattice. Therefore, we may reasonably suggest that the frequency shifts in our clathrate compounds are due to the π electron donation from the benzene ring to the hydrogen atoms of adenine which has a more electrophilic character caused by the coordination.

Another essential feature of the out-of-plane CH bending vibration (A_{2u}) is that it appears as a very intense single band at 681 cm⁻¹ in the infrared spectra of the clathrate compounds (Table III). A similar single band was observed in the infrared spectra of the Cd(4,4'-bipyridyl)M'(CN)₄.2C₆H₆ [30]. This vibrational mode splits into a doublet in Cd (pyrazine)M(CN)₄.2C₆H₆ (M=Cd or Hg) [31] and M(NH₃)₂M'(CN)₄·2C₆H₆ (M=Mn or Cd, M'=Cd or Hg) [1] and into a triplet in M(ethylenediamine)M'(CN)₄·2C₆H₆ (M=Mn or Cd, M'=Cd or Hg) [7]. In the case of clathrates with triplet or doublet features, the splittings have been ascribed to crystal field effects (strong host-guest interactions) [7]. In the case of clathrates with a single band, because of the larger cavities due to the ligands, the host-guest interactions are expected not to be effective for splitting [30].

Based on the present spectral data, it is not possible to determine the conformation of the benzene molecules in the host lattice in our clathrate compounds. As in the Hofmann-type benzene and Hofmann- T_d -type benzene clathrates, the relative orientation of the N-H bands of adenine with respect to the axis of the π cloud of benzene must be the one most favourable for hydrogen bonding [32].

The preceding discussion considered as a whole leads us the conclusion that the host lattice of these clathrates are similar to those of other T_d -type clathrates.

References

- 1. E. Kasap and Z. Kantarcı: J. Incl. Phenom. 20, 33 (1995).
- 2. H. Yuge and T. Iwamoto: J. Incl. Phenom. 14, 217 (1992).
- 3. R. Kurada: Inorg. Nucl. Chem. Lett. 9, 13 (1973).
- T. Iwamoto: 'The Hofmann-type and Related Inclusion Compounds', in J. L. Atwood, J. E. D. Davies and D. D. MacNicol (eds.), *Incluson Compounds V*, Academic Press, 1984, pp. 29–57.
- 5. S. Nishikiori and T. Iwamoto: Chem. Lett. 1775 (1981).
- 6. S. Nishikiori and T. Iwamoto: J. Incl. Phenom. 3, 283 (1985).
- 7. E. Kasap and Z. Kantarcı: J. Incl. Phenom. 23, 1 (1995).
- 8. Z. Kantarcı, C. Bayrak, and S. Bayari: J. Mol. Struct. 407, 155 (1997).
- 9. Z. Kantarcı, N. Karacan and B. Davarcıoğlu: J. Mol. Struct. 53, 323 (1994).
- Y. Nishimura, M. Tsuboi, S. Kato, and K. Morokuma, in J. Lascombe and P. V. Huong (eds.), Raman Spectroscopy, Linear and Nonlinear, Wiley, Chichester, UK, 1982, p. 703.
- 11. M. J. Nowak, L. Lapinski, J. S. Kwiatkowski, and J. Leszczynski: J. Phys. Chem. 100, 3527 (1996).
- 12. A. Y. Hirakawa, H. Okada, S. Sasagawa, and M. Tsuboi: Spectrochim. Acta 41A, 209 (1985).
- A. Bertoluzza, C. Fagnano, R. Tosi, M. A. Morelli, and D. A. Long: *J.Raman Spectrosc.* 18, 83 (1987).

- 14. N. C. Gonnella, H. Nakanishi, J. B. Holtwick, D. S. Horowits, K. Kanamori, N. J. Leonard, and J. D. Roberts: *J. Am. Chem. Soc.* **105**, 2050 (1983).
- 15. R. D. Brown, P. D. Godfrey, D. McNaughton, and A. P. Pierlot: *Chem.Phys. Lett.* **156**, 61 (1989).
- 16. J. Lin, C. Yu, S. Peng, I. Akiyama, K. Li, L. Kao Lee, and P. R. LeBreton: *J. Am. Chem. Soc.* **102**, 4627 (1980).
- 17. M. J. Nowak, L. Lapinski and J. S. Kwiatkowski: Chem. Phys. Lett. 157, 14 (1989).
- 18. Y. Kyogoku, S. Higuchi, and M. Tsuboi: Spectrochim. Acta 23A, 969 (1967).
- 19. M. Tsuboi and Y. Kyogoku, in W. W. Zorbach and R. S. Typson (eds.), *Synthetic Procedures in Nucleic Acid Chemistry*, Vol. 2, p. 215, Wiley, New York (1973).
- 20. Y. Nishimura, M. Tsuboi, S. Kato, and K. Morokuma, *Molecular Structure Symposium, Chemical Society of Japan*, Paper 4A 09 (1981).
- 21. P. Colarussa, K. Q. Zhang, B. Guo and P. F. Bernath: Chem. Phys. Lett. 269, 39 (1997).
- 22. S. Akyüz and J. E. D. Davies: J. Mol. Struct. 95, 157 (1982).
- 23. D. A. Thornton: J. Coord. Chem. 24, 261 (1991).
- 24. S. Shirotake: Chem. Pharm. Bull. 28, 1673 (1980).
- 25. L. H. Jones: Spectrochim. Acta 17, 188 (1961).
- 26. B. Ziegler and D. Babel: Z. Naturforsch. 46B, 47 (1991).
- 27. P. N. Gerlach and B. M. Powell: J. Chem. Phys. 85, 6004 (1989).
- 28. P. C. Painter and J. L. Koening: Spectrochim Acta 33A, 103 (1977).
- 29. S. Akyüz, A. B. Dempster, and R. L. Morehouse: Spectrochim. Acta 30A, 1989 (1974).
- 30. S. Bayari, Z. Kantarcı, and S. Akyüz: J. Incl. Phenom. 17, 291 (1994).
- 31. N. Ekici, Z. Kantarcı, and S. Akyüz: J. Incl. Phenom. 10, 9 (1991).
- 32. E. Ruiz, J. J. Novoa and S. Alvarez: J. Phys. Chem. 99, 2296 (1995).
- 33. E. B. Wilson: Phys. Rev. 45, 706 (1934).
- 34. J. E. D. Davies, A. B. Dempster, and R. L. Suziki: Spectrochim. Acta 30A, 1183 (1974).